Tactile Sensing: Steps to Artificial Somatosensory Maps

G. Cannata, S. Denei, F. Mastrogiavovanni

University of Genova

RO–MAN’10, Viareggio, September 15th, 2010
Scenario

Skin based robot tasks

Skin based application software (incl. basic robot behaviors)

iCub

Kaspar

Nao

WWW.ROBOSKIN.EU
Outline

- Context & Motivations
- How to build a somatosensory map?
 - Skin Self-Calibration
 - 2D Mapping
- Simple results
- Possible applications
Context & Motivations

- Full-body tactile representation depends on:
 - robot morphology and shape
 - taxels placement (and density) over the robot surface

- **Goal**: Investigate robot-independent representation structures for high-level behaviors:
 - touch classification
 - robot control
 - “body awareness”
Context & Motivations
Somatosensory maps preserve the topographic arrangement between tactile elements in 2D:
- Distortions are allowed but should be minimized
- An “atlas” can be created

Somatosensory maps can describe more abstract contact features:
- Contacts over large areas can be represented using single units (i.e., “left forearm in contact”)
- Hierarchical data structures are possible
Steps:

1. **Skin Calibration**: a triangulated 3D mesh representing robot skin at the surface is obtained.
2. **2D Mapping**: the mesh is parameterized in order to preserve taxel topographic arrangement (i.e., areas, angles or their combination).
Step #1: Skin Self–Calibration

Definition:
The automated process of estimating the location (and in the future also the response) of each taxel with respect to a robot-centered reference frame, after the “skin” has been actually fixed on a robot body part.

Raw data $p = p(x, y, z, t)$ $p \in \mathbb{R}^k$

Step #1: Skin Self-Calibration

Idea:
To produce the required tactile stimuli by assigning the robot with a motion control law able to guarantee contact with an external object, which position is known, thereby activating taxels in a “controlled” way.
Skin–Calibration Results

A mesh–like data structure:
- Each vertex represents a taxel pose in 3D
- Still dependent on robot morphology
- Still difficult to operate upon
Idea:

- Exploiting very old ideas from Minimal Surface Theory
- Obtaining a generic 2D representation of 3D skin meshes preserving regularity and topographic properties of the skin geometry
Given a discrete 3D surface S (i.e., calibrated skin, possibly with holes), the goal is to build a piecewise linear mapping $\Psi : S \rightarrow M$ between S and an isomorphic discrete 2D surface M (i.e., a cognitive map made up of s triangles $T_{M,1}, \ldots, T_{M,s}$) best preserving the intrinsic properties of S.
The initial problem can be reformulated as determining an isomorphic discrete 2D surface \mathcal{M} such that a properly defined energy functional $E(S, \mathcal{M})$ is minimal.

$$M = \arg \min_{\mathcal{M} \sim S} E(S, \mathcal{M}),$$

$$\frac{\partial E}{\partial m_i} = 0.$$
Step #2: 2D Mapping

\[E = \lambda_1 E^a + \lambda_2 E^\chi \]

\[E^a = \sum_{(j,i) \in \Delta_r} \cot \alpha_{ij} |m_i - m_j|^2. \]

\[E^\chi = \sum_{j:(j,i) \in \Delta_r} \frac{\cot \alpha_{ij} + \cot \beta_{ij}}{|t_i - t_j|^2} (m_i - m_j)^2. \]

\[\frac{\partial E^a}{\partial m_i} = \sum_{j:(j,i) \in \Delta_r} (\cot \alpha_{ij} + \cot \beta_{ij}) (m_i - m_j) = 0, \]

\[\frac{\partial E^\chi}{\partial m_i} = \sum_{j:(j,i) \in \Delta_r} \frac{\cot \alpha_{ij} + \cot \beta_{ij}}{|t_i - t_j|^2} (m_i - m_j) = 0. \]

Intrinsic Parameterization

Angle Preserving

Area Preserving
2D Mapping Results

2D data structure
How can we exploit this data structure for designing high-level behaviors?

- Tactile-based control strategies
- Touch classification by means of nonlinear oscillators
- Hierarchical representation using a tactile “atlas”
Tactile-based Control Strategies
Touch Classification
Touch Classification
Building a Skin Atlas

Artificial Dermatomes?
Summary

- A process to build a skin representation independent from robot morphology
- Data structures to ground high-level data processing and control behaviors
- Next: assessment of contact models and their integration with the data structures
- Next: Skin calibration by means of self-touch & with a real robot